
Planning Computing Instruction through the Universal Design for Learning (UDL) 
Framework 

 
Maya Israel, Ph.D., University of Illinois at Urbana Champaign, misrael@illinois.edu 

Quentin Wherfel, M.Ed. University of Illinois at Urbana Champaign, wherfel2@illinois.edu 
Saad Shehab, M.Ed. University of Illinois at Urbana Champaign, shehab2@illinois.edu  

 
The table below provides examples of how the UDL framework can be used by teachers to 
proactively plan for the learner diversity in their classrooms. It is adapted from the CAST 
(www.cast.org) UDL framework.  
 

Multiple Means of 
Representation 

Multiple Means of Action and 
Expression 

Multiple Means of 
Engagement 

1. Provide options for 
perception 
 
-Model computing lessons using 
an interactive whiteboard, 
videos, or already created 
templates 
 
-Give access to modeled code 
while students work 
independently 
 
-Provide access to video 
tutorials of computing tasks  
  

4. Provide options for physical 
action 
 
-Provide teacher’s codes or use 
partially completed code as 
templates 
 
-Include unplugged activities 
that teach through physical 
representations of abstract 
computing concepts 
  
-Use assistive technology 
including larger/smaller mice, 
touch-screen computers, screen 
readers 

7. Provide options for 
recruiting interest 
  
-Give students choices (project, 
topic, display of project).  
 
-Allow students to make 
projects relevant to culture and 
age 
 
-Minimize common “pitfalls” 
for both computing and 
integrated content by 
considering barriers to learning 
from the beginning of the 
planning process. 

2. Provide options for language 
mathematical expressions, and 
symbols 
  
-Teach and review content 
specific vocabulary if 
computing is integrated into 
other content areas. 
 
-Teach and review computing 
vocabulary (e.g., algorithm, 
decomposition, abstraction) 
  
 

5. Provide options for 
expression and communication 
  
-Give options of computing 
software based on accessibility 
and engagement (e.g., Block 
based languages like Scratch, 
Etoys, Code.org, Alice vs. text-
based languages) 
 
-Give opportunities to practice 
computing skills and content 
through projects that build on 
prior lessons 

8. Provide options for 
sustaining effort and 
persistence 
  
-Remind students of both 
computing and content goals 
 
-Provide extensions for 
students to keep engaged.  
 
-Encourage and teach peer 
collaboration (e.g., pair 
programming) 



3. Provide options for 
comprehension 
  
-Activate or build background 
knowledge by making 
computing tasks interesting and 
culturally relevant 
 
-Clearly state lesson content and 
computing goals  
 
-Involve students during teacher 
modeling by asking questions as 
comprehension checkpoints 

6. Provide options for executive 
functions 
  
-Guide students to set goals to 
accomplish when they have a 
project that will require multiple 
days or weeks 
 
-Develop methods to record 
each student’s progress (have 
planned checkpoints during 
lessons for understanding and 
progress for computing skills 
and content) 

9. Provide options for self-
regulation 
  
-Communicate clear 
expectations in terms of what 
students will work on, how 
they will work (individually or 
with peers), how they can seek 
help  
  
-Develop ways for students to 
self-assess and reflect on own 
projects and those of others  

Adapted from www.cast.org, www.udlcenter.org. Copyright 2011 by CAST 

 

***There are many resources about using the UDL framework during instruction. This work can 
be applied to CS education. The table above is a working document that is dynamic and can 
change. If you have suggestions, examples, developed lesson plans using UDL during CS 
instruction, etc., please let me know so we can start building this body of practitioner work.  
 
Thank you, 
Maya Israel 
University of Illinois at Urbana Champaign 
misrael@illinois.edu 



 


